
Smart Sensor

Development Kit

User Manual

Version date 16/06/2021

Development kit for the DLL for the

Smart Sensor

Version 1.0

2/7

Index
1. License agreement...3
2. Communication between node and transducer...4

Standard packets (in range 0x00 to 0x7F)..5
NET_UNIT Packet...5
NET_CHANNEL Packet..5
NET_READ Packet...7

3/7

1.License agreement

Read this license agreement thoroughly before using the System. Using this System is subject to the
acceptance of this agreement.

If you choose to refuse the following conditions, please return this System to the point of purchase
for a complete refund. This agreement involves Tecnosoft srl, Peschiera Borromeo, Milano, Italy
(henceforth called Tecnosoft) and the User (be it a physical or juridical person) for the following
Smart Sensor Development kit (henceforth called Software): "Smart Sensor”.

Tecnosoft grants the user a non-exclusive right to use a copy of the software on a single computer
provided that the user accepts the following conditions.

1. User license. The Smart Sensor Development kit is property of Tecnosoft and cannot be
copied nor sold without the prior written authorization of Tecnosoft. The Smart Sensor
Development kit is protected by Italian and European Laws and by International Treaties
concerning intellectual properties.

2. Exclusion of liabilities. Except for what stated by applicable laws, in no case can Tecnosoft
be considered liable for damages or losses, direct or indirect, including, but not limited to,
loss or missing income, suspension of activities, loss of information or any other monetary or
economical damage, deriving from proper or improper use of the Smart Sensor
Development kit even if Tecnosoft has been advised of the possibility of such damages. In
any case, the responsibility of Tecnosoft for such damages will be limited to the price paid
for the Smart Sensor Development kit. This clause is applied even if the User does not accept
the Smart Sensor Development kit.

3. Use of Firmware results. It is User's responsibility to check that results given by the Smart
Sensor Development kit are correct and appropriate. In no case the Smart Sensor
Development kit should be used if such use can be threatening to the health or life of
human beings. This clause is applied even if the User does not accept the Software.

4. Updates. If the Smart Sensor Development kit is an update of a previous version, the license
is transferred from the old version to the update. Only the update can be used, unless the
update is destroyed.

5. Separation of components. The Smart Sensor Development kit is licensed as a single
product. Components cannot be separated.

6. Limitations. The User cannot convert, decode, decompile or disassemble the Smart Sensor
Development kit, except for what is explicitly requested by applicable laws.

4/7

2.Communication between node and transducer

Communication between node and transducer is performed at TTL levels (3.3V or 5V depending on
supply type) at 9600 baud, 8 bit data, 1 stop, no parity.

The IT uses the connector below:

 Pin description (male used on nodes):
1. TX: From SS to node (white)
2. RX: From SS to node (black)
3. Ground (green)
4. Supply (3.3V or 5.0V) (red)

Communication occurs in frames. A frame is started by a 0xFF character and the number of
characters in the frame is calculated using the data length field of the frame.
A frame is not be terminated by a 0xFF character. When the needed number of characters is
received,, the frame is implicitly terminated. A 0xFF character received before the packet is
completely received will abort reception and start reception of a new frame.
Within frames bytes 0xFE and 0xFF are encoded as 0xFE followed by <aabbccdd> where aa=01
encodes a 0xFE and aa=10 encodes a 0xFF; an aa value of 00 or 11 means nothing is encoded.
So 0xFE + 0b00000110 means 0xFE followed by 0xFF.
A packet is encoded as follows:

typedef struct { unsigned
char dest; unsigned
char source; unsigned
char type; unsigned
char filler; unsigned
size; unsigned
sequence;
union { unsigned char

content[NET_MAX_CONTENT];
};

} NET_PACKET;

Note: unsigned char are eight bits and unsigned are 16 bits little endian.
Dest is the destination address for the packet, source is the address of the unit generating the
packet. These may be a value in range 0x01 to 0xFE or be one of the special values:

#define NET_MASTER_ID 0xFF

#define NET_ALL_ID 0x00

Type is the packet type; types 0x00 to 0x7F have the same meaning for all Smart Sensor (e.g. READ),
types 0x80 to 0xFF are transducer dependent: it is not safe to issue commands in this range to a
transducer if the transducer type and the meaning of the packet for that transducer is known.

5/7

Filler is just that: a dummy field used to keep the following fields word aligned when the structure is
stored in memory (this is necessary for some microprocessors like the MSP430).
Size is the number of bytes following the sequence field.
Sequence is used to distinguish different packets when sending them on a media that uses
streaming to improve communication performance.
Normally an unit will communicate with a transducer in a ping pong way.
Another use of the sequence field is when sending data that is serialized (like reading block 0, 1
and so on of memory).

Standard packets (in range 0x00 to 0x7F)
Three standard packets are currently defined:

Type Name Description

0x00 NET_UNIT Query information about the connected Smart Sensor

0x01 NET_CHANNEL Query information about specific channel

0x02 NET_READ Read value a channel

NET_UNIT Packet

This packet has the following content.

typedef struct {
 // The following fields are only in answer message
unsigned char identity[8];
 unsigned model; // Model of Smart Sensor unsigned
numberOfChannels;
 unsigned long calibration;// Calibration date (in seconds since 1/1/2000)
unsigned long expiry; // Expiration date (in seconds since 1/1/2000)
} NET_UNIT_PACKET;

The packet is sent to the transducer with size==0 and the above data is returned.
The model field identifies the specific transducer type: a program may use this field to understand
the type of the transducer and later use packets with type in range 0x80 to 0xFF for the specific
transducer.
Identity is unique: no two transducers will ever be manufactured with the same identity.
A unit is expected to get this packet from the transducer to verify the transducer type and validity.
Then the unit may issue NET_CHANNEL packets for channels 0 to numberOfChannels-1.

NET_CHANNEL Packet

This packet has the following content:

typedef struct {
 unsigned channel; // Channel number (0..<numberOfChannels-1)

 // The following fields are only in answer message
 unsigned type; // Type of transducer (used e.g. to interpret
 CHANNEL_FAILURE error codes) unsigned supply;
// Current needed for measure in milliamps unsigned char unit[16];
// Label for unit type (e.g. Pa)
 unsigned char measure; // Type of unit of measure (see above)
 unsigned char radians; // (2*<exponent of >)+128;
 unsigned char steradians; // (2*<exponent of >)+128;
 unsigned char meters; // (2*<exponent of >)+128;
 unsigned char kilograms; // (2*<exponent of >)+128;
 unsigned char seconds; // (2*<exponent of >)+128;
 unsigned char amperes; // (2*<exponent of >)+128;

6/7

 unsigned char kelvins; // (2*<exponent of >)+128;
 unsigned char moles; // (2*<exponent of >)+128;
 unsigned char candelas; // (2*<exponent of >)+128;
} NET_CHANNEL_PACKET;

This packet is issued to the Smart Sensor with only the channel field filled in (size==2). The answer
is a packet filled with all the above information.
The type of the transducer may be useful to give a more complete interpretation of possible error
conditions, but it is by no means required that a reading unit interprets it.

A unit is expected to read the supply field and evaluate if the current required for the
measurement can currently be sourced or delay the measure if this is not possible.

The unit field is assumed to match the unit definition given with the exponents(radians...) and the
measure fields: this is assumed to be user readable.

The measure constant is one of the following values:

// 0: Unit is described by the product ofsi base units, plus radians and
steradians,
// raised to the powers recorded in fields 2-10.

#define MEASURE_TYPE_SI 0
// 1: Unit is U/U, where U is described by the product of SI base units, plus
radians
// and steradians, raised to the powers recorded in fields 2-10.
#define MEASURE_TYPE_UU 1

// 2: Unit is loglO(U), where U is described by the product of SI base units,
plus radians
// and steradians, raised to the powers recorded in fields 2-10.
#define MEASURE_TYPE_LOG10U 2
// 3: Unit is log10(U/U),whereU is described by the product of SI base units,
plus radians
// and steradians, raised to the powers recorded in fields 2-10.
#define MEASURE_TYPE_LOG10UU 3

// 4: The associated quantity is digital data (e.g., a bit vector) and has no
unit.
// Fields 2-10 shall be set to 128. The "digital data" type applies to data
that represents counting,
// such as the output of an ADC, or that represents a state, such as the
current positions
// of a bank of switches.
#define MEASURE_TYPE_DIGITAL 4

// 5: The associated physical quantity is represented by values on an arbitrary
scale
// (e.g., hardness). Fields 2-10 are reserved, and shall be set to 128
#define MEASURE_TYPE_ARBITRARY 5

For more information on this issue refer to IEEE Std 1451.2.1997.
Please note that the above definition of unit requires that the readouts are returned in MKSA units.
Temperatures are hence measured in Kelvins. This is not a problem because the packet is not
supposed to be human readable.

NET_READ Packet

This packet has the following content:

typedef struct
{ unsigned channel;
unsigned command;

7/7

 // The following fields are only in answer message
float value;
unsigned error;
} NET_READ_PACKET;

When issued to the Smart Sensor only the first two fields should be filled in (size==4), the channel
being a value in range 0 to numberOfChannels-1 and the command being one of the following
constants:

// No command: just sending message to query reading status
#define CHANNEL_COMMAND_NONE 0
// Start reading channel
#define CHANNEL_COMMAND_START 1

When reading a CHANNEL_COMMAND_START command would be issued followed by repeated
CHANNEL_COMMAND_NONE commands, till a final result is returned.

A Smart Sensor will always answer with the full packet, the value may be NaN and the error field is
defined by the following constants:

// Channel has been read and value is being returned
#define CHANNEL_READ_OK 0x0000
// Channel is in overflow condition
#define CHANNEL_OVERFLOW 0x0100
// Channel is in underflow condition
#define CHANNEL_UNDERFLOW 0x0200
// Readout not ready yet, but wait
#define CHANNEL_WAIT 0xFE00
// Failure reading channel (the low byte will contain additional information)
#define CHANNEL_FAILURE 0xFF00

The high byte of the returned constant is as defined above, when receiving a CHANNEL_WAIT
response, the external unit is expected to query again.

The low byte of the error field depends on the sensor type and is expected to give additional
information; for example 'broken wire' in a 4□20 mA transducer.

Tecnosoft s.r.l.
Via Galvani, 4, 20068 Peschiera Borromeo (MI) - ITALY
telephone +39 02 26922888 - fax +39 02 26922875 - tecnosoft @tecnosoft. eu – tecnosoft.eu

mailto:tecnosoft@tecnosoft.eu
mailto:tecnosoft@tecnosoft.eu
mailto:tecnosoft@tecnosoft.eu

	1. License agreement
	2. Communication between node and transducer
	Standard packets (in range 0x00 to 0x7F)
	NET_UNIT Packet
	NET_CHANNEL Packet
	NET_READ Packet

